Skip to main content

Sensing-Centric ISAC Signal Processing

  • Chapter
  • First Online:
Integrated Sensing and Communications

Abstract

We present sensing-centric integrated sensing and communications strategies and signal processing techniques where the radar and communication operations are respectively considered as the primary and the secondary objectives of the overall system. In this context, optimized beamforming-based joint radar-communications (JRC) is described that exploits the same physical platform and transmits waveforms to satisfy both radar and communication objectives. We overview JRC signaling strategies based on amplitude, phase, and their combinations. Waveform design strategies, such as waveform diversity, waveform permutation, and frequency hopping, are exploited in JRC systems to increase communication capacity without compromising radar system performance. Finally, we discuss advanced topics of resource optimization and fast-time information embedding for the JRC systems. Simulation results are presented that demonstrate the efficacy of the techniques discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A.: Strategies for Radar-Communication Spectrum Sharing. Ph.D. Dissertation, Temple Univ., PA (2021)

    Google Scholar 

  2. Ahmed, A., Gu, Y., Silage, D., Zhang, Y.D.: Power-efficient multi-user dual-function radar-communications. In: Proc. IEEE Radar Conf. Oklahoma City, OK (2018)

    Google Scholar 

  3. Ahmed, A., Silage, D., Zhang, Y.D.: Chance constrained beamforming for joint radar-communication systems. In: Proc. Sensor Array and Multichannel Signal Process. Workshop. Hangzhou, China (2020)

    Google Scholar 

  4. Ahmed, A., Zhang, S., Zhang, Y.D.: Antenna selection strategy for transmit beamforming-based joint radar-communication system. Digital Signal Process. 105, 102768 (2020)

    Article  Google Scholar 

  5. Ahmed, A., Zhang, S., Zhang, Y.D.: Optimized sensor selection for joint radar-communication systems. In: Proc. Int. Conf. Acoust., Speech and Signal Process., pp. 4682–4686. Barcelona, Spain (2020)

    Google Scholar 

  6. Ahmed, A., Zhang, Y.D., Gu, Y.: Dual-function radar-communications using QAM-based sidelobe modulation. Digital Signal Process. 82, 166–174 (2018)

    Article  Google Scholar 

  7. Ahmed, A., Zhang, Y.D., Hassanien, A.: Joint radar-communications exploiting optimized ofdm waveform. Remote Sensing 13, 4376 (2021)

    Article  Google Scholar 

  8. Ahmed, A., Zhang, Y.D., Hassanien, A., Himed, B.: OFDM-based joint radar-communication system: optimal sub-carrier allocation and power distribution by exploiting mutual information. In: Proc. Asilomar Conf. on Signals, Systems, and Computers. Pacific Grove, CA (2019)

    Google Scholar 

  9. Ahmed, A., Zhang, Y.D., Himed, B.: Distributed dual-function radar-communication MIMO system with optimized resource allocation. In: Proc. IEEE Radar Conf. Boston, MA (2019)

    Google Scholar 

  10. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4(1), 1–106 (2012)

    Article  MATH  Google Scholar 

  11. Baxter, W., Aboutanios, E., Hassanien, A.: Dual-function mimo radar-communications via frequency-hopping code selection. In: Proc. Asilomar Conf. on Signals, Systems, and Computers, pp. 1126–1130. Pacific Grove, CA (2018)

    Google Scholar 

  12. Baxter, W., Aboutanios, E., Hassanien, A.: Joint radar and communications for frequency-hopped MIMO systems. IEEE Trans. Signal Process. 70, 729–742 (2022)

    Article  MathSciNet  Google Scholar 

  13. Baxter, W., Nosrati, H., Aboutanios, E.: A study on the performance of symbol dictionary selection for the frequency hopped DFRC scheme. In: Proc. IEEE Radar Conf., pp. 1–6. Florence, Italy (2020)

    Google Scholar 

  14. Baylis, C., Fellows, M., Cohen, L., Marks, R.J.: Solving the spectrum crisis: Intelligent, reconfigurable microwave transmitter amplifiers for cognitive radar. IEEE Microw. Mag. 15(5), 94–107 (2014)

    Article  Google Scholar 

  15. Biglieri, E.: Principles of Cognitive Radio. Cambridge University Press (2012)

    Google Scholar 

  16. Blanco, L., Nájar, M.: Sparse multiple relay selection for network beamforming with individual power constraints using semidefinite relaxation. IEEE Trans. Wireless Commun. 15(2), 1206–1217 (2016)

    Google Scholar 

  17. Bliss, D.W.: Cooperative radar and communications signaling: The estimation and information theory odd couple. In: Proc. IEEE Radar Conf., pp. 50–55. Cincinnati, OH (2014)

    Google Scholar 

  18. Blunt, S.D., Cook, M.R., Stiles, J.: Embedding information into radar emissions via waveform implementation. In: Proc. Int. Waveform Diversity and Design Conf., pp. 195–199. Niagara Falls, Canada (2010)

    Google Scholar 

  19. BouDaher, E., Hassanien, A., Aboutanios, E., Amin, M.G.: Towards a dual-function MIMO radar-communication system. In: Proc. IEEE Radar Conf., pp. 1–6. Philadelphia, PA (2016)

    Google Scholar 

  20. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(l_1\) minimization. Journal of Fourier Analysis and Applications 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chiriyath, A.R., Paul, B., Bliss, D.W.: Radar-communications convergence: Coexistence, cooperation, and co-design. IEEE Trans. Cogn. Commun. Netw. 3(1), 1–12 (2017)

    Article  Google Scholar 

  22. Deligiannis, A., Amin, M., Lambotharan, S., Fabrizio, G.: Optimum sparse subarray design for multitask receivers. IEEE Trans. Aerosp. Electron. Syst. 55(2), 939–950 (2019)

    Article  Google Scholar 

  23. Demir, O.T., Tuncer, T.E.: Antenna selection and hybrid beamforming for simultaneous wireless information and power transfer in multi-group multicasting systems. IEEE Trans. Wireless Commun. 15(10), 6948–6962 (2016)

    Article  Google Scholar 

  24. Eedara, I.P., Hassanien, A., Amin, M.G.: Performance analysis of dual-function multiple-input multiple-output radar-communications using frequency hopping waveforms and phase shift keying signalling. IET Radar Sonar Navig. pp. 1–17 (2021)

    Google Scholar 

  25. Euziere, J., Guinvarc’h, R., Lesturgie, M., Uguen, B., Gillard, R.: Dual function radar communication time-modulated array. In: Proc. Int. Radar Conf., pp. 1–4. Lille, France (2014)

    Google Scholar 

  26. Geng, Z., Deng, H., Himed, B.: Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing. IEEE Signal Process. Lett. 22(4), 484–488 (2015)

    Article  Google Scholar 

  27. Griffiths, H., Blunt, S., Cohen, L., Savy, L.: Challenge problems in spectrum engineering and waveform diversity. In: Proc. IEEE Radar Conf., pp. 1–5. Ottawa, Canada (2013)

    Google Scholar 

  28. Griffiths, H., Cohen, L., Watts, S., Mokole, E., Baker, C., Wicks, M., Blunt, S.: Radar spectrum engineering and management: Technical and regulatory issues. Proc. IEEE 103(1), 85–102 (2015)

    Article  Google Scholar 

  29. Hassanien, A., Aboutanios, E., Amin, M.G., Fabrizio, G.A.: A dual-function mimo radar-communication system via waveform permutation. Digital Signal Process. 83, 118–128 (2018)

    Article  Google Scholar 

  30. Hassanien, A., Amin, M.G., Aboutanios, E., Himed, B.: Dual-function radar communication systems: A solution to the spectrum congestion problem. IEEE Signal Process. Mag. 36(5), 115–126 (2019)

    Article  Google Scholar 

  31. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: A dual function radar-communications system using sidelobe control and waveform diversity. In: Proc. IEEE Radar Conf., pp. 1260–1263. Arlington, VA (2015)

    Google Scholar 

  32. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Dual-function radar-communications using phase-rotational invariance. In: Proc. 23rd European Signal Process. Conf., pp. 1346–1350. Nice, France (2015)

    Google Scholar 

  33. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 64(8), 2168–2181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Efficient sidelobe ASK based dual-function radar-communications. In: Proc. SPIE Defense + Security, Radar Sensor Technology Conf. Baltimore, MD (2016)

    Google Scholar 

  35. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Phase-modulation based dual-function radar-communications. IET Radar, Sonar & Navigation 10(8), 1411–1421 (2016)

    Article  Google Scholar 

  36. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Signaling strategies for dual-function radar communications: an overview. IEEE Aerosp. Electron. Syst. Mag. 31(10), 36–45 (2016)

    Article  Google Scholar 

  37. Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F., Himed, B.: Non-coherent PSK-based dual-function radar-communication systems. In: Proc. IEEE Radar Conf., pp. 1–6. Philadelphia, PA (2016)

    Google Scholar 

  38. Hassanien, A., Himed, B., Rigling, B.D.: A dual-function MIMO radar-communications system using frequency-hopping waveforms. In: Proc. IEEE Radar Conf., pp. 1721–1725. Seattle, WA (2017)

    Google Scholar 

  39. Hassanien, A., Vorobyov, S.A., Khabbazibasmenj, A.: Transmit radiation pattern invariance in MIMO radar with application to DOA estimation. IEEE Signal Process. Lett. 22(10), 1609–1613 (2015)

    Article  Google Scholar 

  40. Hayvaci, H.T., Tavli, B.: Spectrum sharing in radar and wireless communication systems: A review. In: Proc. Int. Conf. Electromagn. in Advanced Appl., pp. 810–813. Palm Beach, Aruba (2014)

    Google Scholar 

  41. Huang, K.W., Bica, M., Mitra, U., Koivunen, V.: Radar waveform design in spectrum sharing environment: Coexistence and cognition. In: Proc. IEEE Radar Conf., pp. 1698–1703. Johannesburg, South Africa (2015)

    Google Scholar 

  42. Khawar, A., Abdelhadi, A., Clancy, T.C.: Coexistence analysis between radar and cellular system in los channel. IEEE Antennas Wireless Propag. Lett. 15, 972–975 (2016)

    Article  Google Scholar 

  43. Kumar, S., Costa, G., Kant, S., Flemming, B.F., Marchetti, N., Mogensen, P.: Spectrum sharing for next generation wireless communication networks. In: Proc. First Int. Workshop on Cognitive Radio and Advanced Spectr. Manag., pp. 1–5. Aalborg, Denmark (2008)

    Google Scholar 

  44. Li, B., Petropulu, A.P.: Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2846–2864 (2017)

    Article  Google Scholar 

  45. Li, B., Petropulu, A.P., Trappe, W.: Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system. IEEE Trans. Signal Process. 64(17), 4562–4575 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, F., Masouros, C., Li, A., Ratnarajah, T.: Robust MIMO beamforming for cellular and radar coexistence. IEEE Wireless Commun. Lett. 6(3), 374–377 (2017)

    Article  Google Scholar 

  47. Liu, X., Huang, T., Shlezinger, N., Liu, Y., Zhou, J., Eldar, Y.: Antenna selection strategy for transmit beamforming-based joint radar-communication system. IEEE Trans. Signal Process. 68, 3929–3944 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mahal, J.A., Khawar, A., Abdelhadi, A., Clancy, T.C.: Spectral coexistence of MIMO radar and MIMO cellular system. IEEE Trans. Aerosp. Electron. Syst 53(2), 655–668 (2017)

    Article  Google Scholar 

  49. McCormick, P.M., Blunt, S.D., Metcalf, J.G.: Simultaneous radar and communications emissions from a common aperture, Part I: Theory. In: Proc. IEEE Radar Conf., pp. 1685–1690. Seattle, WA (2017)

    Google Scholar 

  50. Mehanna, O., Sidiropoulos, N.D., Giannakis, G.B.: Joint multicast beamforming and antenna selection. IEEE Trans. Signal Process. 61(10), 2660–2674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nosrati, H., Aboutanios, E., Smith, D.: Array partitioning for multi-task operation in dual function MIMO systems. Digital Signal Process. 82, 106 – 117 (2018)

    Article  Google Scholar 

  52. Nosrati, H., Aboutanios, E., Smith, D.: Multi-stage antenna selection for adaptive beamforming in MIMO radar. IEEE Trans. Signal Process. 68, 1374–1389 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Paisana, F., Marchetti, N., DaSilva, L.A.: Radar, TV and cellular bands: Which spectrum access techniques for which bands? IEEE Commun. Surveys & Tuts. 16(3), 1193–1220 (2014)

    Article  Google Scholar 

  54. Sturm, C., Zwick, T., Wiesbeck, W.: An OFDM system concept for joint radar and communications operations. In: Proc. IEEE 69th Veh. Technol. Conf., pp. 1–5. Barcelona, Spain (2009)

    Google Scholar 

  55. Surender, S.C., Narayanan, R.M., Das, C.R.: Performance analysis of communications & radar coexistence in a covert UWB OSA system. In: Proc. IEEE Global Telecommunications Conf., pp. 1–5. Miami, FL (2010)

    Google Scholar 

  56. Wang, X., Hassanien, A., Amin, M.G.: Sparse transmit array design for dual-function radar communications by antenna selection. Digital Signal Process. 83, 223–234 (2018)

    Article  Google Scholar 

  57. Wang, X., Hassanien, A., Amin, M.G.: Dual-function MIMO radar communications system design via sparse array optimization. IEEE Trans. Aerosp. Electron. Syst. 55(3), 1213–1226 (2019)

    Article  Google Scholar 

  58. Wang, X., Xu, J., Hassanien, A., Aboutanios, E.: Joint communications with FH-MIMO radar systems: An extended signaling strategy. In: Proc. Int. Conf. Acoust., Speech and Signal Process., pp. 8253–8257 (2021)

    Google Scholar 

  59. Wu, K., Zhang, J.A., Huang, X., Guo, Y.J., Heath, R.W.: Waveform design and accurate channel estimation for frequency-hopping MIMO radar-based communications. IEEE Trans. Commun. 69(2), 1244–1258 (2021)

    Google Scholar 

  60. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B. 68, 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin D. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, A., Aboutanios, E., Zhang, Y.D. (2023). Sensing-Centric ISAC Signal Processing. In: Liu, F., Masouros, C., Eldar, Y.C. (eds) Integrated Sensing and Communications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2501-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2501-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2500-1

  • Online ISBN: 978-981-99-2501-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics