Skip to main content
Log in

A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Nowadays, there are growing demands for developing economical and multi-functional polymeric materials that simultaneously have high thermal conductivity, optimized electrical conductivity, and improved mechanical properties. Due to its outstanding physical and mechanical properties, graphene can significantly endow epoxy polymers with novel properties. As obtaining large-scale production of graphene is crucial for developing epoxy composites, this review firstly provides insight into the newly developed methods that can balance between quality and scalability of graphene. Then, the thermal and electrical conduction mechanisms of graphene and its polymer composites are illustrated in detail. Additionally, the recent progress of graphene to concurrently regulate the thermal, electrical, and mechanical properties of epoxies is comprehensively reviewed, highlighting the influence of graphene aspect ratio, graphene derivatives, surface modification, orientation, dispersion, and the inclusion of hybrids. This study presents the state-of-the-art review of the established graphene-based epoxy composites for electrically conductive and insulative applications to provide comprehensive guidelines for researchers seeking to attain high-performance materials.

Graphical abstract

This article comprehensively and simultaneously reviews the recent advancements in thermal, electrical, and mechanical properties of graphene-based epoxy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2014, American Chemical Society. (c) Schematic of the cathodic electrochemical exfoliation mechanism. Reproduced with permission [133]. Copyright 2012, American Chemical Society. (d) Schematic of the high shear mixer and the dominating mechanisms, including the effect of shearing, jet cavitation, and collision between graphene sheets. Reproduced with permission [144]. Copyright 2014, RSC Publishing. (e) Schematic explanation of the fabrication of edge-selectively modified GnPs in a dry ball milling through the reaction between the active carbon species at the broken edges of GnPs and the reactant gases. The red ball refers to the reactant gases such as carbon dioxide, hydrogen, sulfur trioxide, and air moisture; (e') an example of the SEM micrograph of the exfoliated GnPs with carboxylic acid at their edges using carbon dioxide as the reactant gas. Reproduced with permission [107]. Copyright 2013, American Chemical Society

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright 2010, Wiley–VCH. (b) Schematic of the transition of polymer from insulative into conductive materials by the incorporation of different graphene loading showing the percolation and tunneling mechanisms

Fig. 6

Copyright 2013, Elsevier. (c, d) Storage modulus versus temperature of epoxy and its composites reinforced with different dispersion states of RGO. Reproduced with permission [229]. Copyright 2013, Elsevier

Fig. 7

Copyright 2014, Elsevier

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Copyright 2011, Elsevier. (c, d) Electrical conductivity and relative Young’s modulus of different graphene-based epoxy composites as a function of the filler content. Reproduced with permission [292]. Copyright 2014, Wiley–VCH

Fig. 12
Fig. 13

Copyright 2015, Elsevier

Fig. 14

Copyright 2018, Wiley–VCH

Fig. 15

Copyright 2019, Elsevier. (d) AFM image of RGO revealing an average size of 400 ~ 600 nm with a thickness of ~ 0.8 nm. (e) Surface morphology of the fabricated 3DGF defining its unique porous structure; 3DGF was fabricated by CVD method with the presence of nickel foam rod. Reproduced under terms of the CC-BY license [311]. Copyright 2017, Springer Nature

Fig. 16

Copyright 2020, Elsevier

Fig. 17

Copyright 2019, IOP Publishing. (d) Schematic of the synthesis process of the pea-pod-like alumina-graphene epoxy composite. (e) In-plane and through-plane TC of the obtained composites. Reproduced with permission [96]. Copyright 2020, Elsevier

Fig. 18
Fig. 19
Fig. 20

Copyright 2013, RSC Publishing

Fig. 21

Copyright 2016, Elsevier

Fig. 22

Copyright 2014, RSC Publishing

Fig. 23

modified by 3-aminepropyltriethoxysilane coupling agent (APS or APTES) to produce h-BN-NH2. The self-assembly was achieved simply by mixing GO with h-BN in an appropriate ratio under continuous stirring for 2 h; then, the mixture was collected and vacuum dried. Reproduced with permission [355]. Copyright 2016, Elsevier

Fig. 24

Copyright 2015, RSC Publishing

Fig. 25
Fig. 26

Copyright 2019, Elsevier

Fig. 27

Copyright 2018, Wiley–VCH

Similar content being viewed by others

References

  1. Khan J, Momin SA, Mariatti M (2020) A review on advanced carbon-based thermal interface materials for electronic devices. Carbon 168:65–112. https://doi.org/10.1016/j.carbon.2020.06.012

  2. Shtein M, Nadiv R, Buzaglo M, Regev O (2015) Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl Mater Interfaces 7:23725–23730. https://doi.org/10.1021/acsami.5b07866

    Article  CAS  Google Scholar 

  3. Singh AK, Panda BP, Mohanty S et al (2017) Synergistic effect of hybrid graphene and boron nitride on the cure kinetics and thermal conductivity of epoxy adhesives. Polym Adv Technol 28:1851–1864. https://doi.org/10.1002/pat.4072

    Article  CAS  Google Scholar 

  4. Siwal SS, Zhang Q, Devi N, Thakur VK (2020) Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers 12. https://doi.org/10.3390/polym12030505

  5. Zhang X, Samorì P (2017) Graphene/polymer nanocomposites for supercapacitors. ChemNanoMat 3:362–372. https://doi.org/10.1002/cnma.201700055

  6. Lu X, Liu H, Murugadoss V et al (2020) Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Engineered Science 9:25–34. https://doi.org/10.30919/es8d901

  7. Zhou Y, Wu S, Ma Y et al (2020) Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ 9:28–40. https://doi.org/10.30919/esee8c150

  8. Zhao Y, Niu M, Yang F et al (2019) Ultrafast electro-thermal responsive heating film fabricated from graphene modified conductive materials. Engineered Science 8:33–38. https://doi.org/10.30919/es8d501

  9. Yan X, Liu J, Khan MA et al (2020) Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater Manuf 9:21–33. https://doi.org/10.30919/esmm5f716

  10. Zhang D, Sun J, Lee LJ, Castro JM (2020) Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based polymer nanocomposites. Engineered Science 10:35–50. https://doi.org/10.30919/es5e1002

  11. Zhao B, Liang L, Bai Z et al (2021) Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ 14:79–86. https://doi.org/10.30919/esee8c488

  12. Qi G, Liu Y, Chen L et al (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  13. Yu Z, Bai Y, Wang JH, Li Y (2021) Effects of functional additives on structure and properties of polycarbonate-based composites filled with hybrid chopped carbon fiber/graphene nanoplatelet fillers. ES Energy Environ 12:66–76. https://doi.org/10.30919/esee8c434

  14. Sun L, Liang L, Shi Z et al (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Engineered Science 12:95–105. https://doi.org/10.30919/es8d1148

  15. Han S, Meng Q, Xing K et al (2020) Epoxy/graphene film for lifecycle self-sensing and multifunctional applications. Compos Sci Technol 198:108312. https://doi.org/10.1016/j.compscitech.2020.108312

  16. Wu H, Zhong Y, Tang Y et al (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  17. Dagdag O, Hsissou R, El Harfi A et al (2020) Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies. Surfaces and Interfaces 18:100454. https://doi.org/10.1016/j.surfin.2020.100454

  18. Zhu Q, Huang Y, Li Y et al (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater 4:780–792. https://doi.org/10.1007/s42114-021-00265-6

    Article  CAS  Google Scholar 

  19. Madhusudhana AM, Mohana KNS, Hegde MB et al (2020) Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv Compos Hybrid Mater 3:141–155. https://doi.org/10.1007/s42114-020-00142-8

    Article  CAS  Google Scholar 

  20. Das R, Vupputuri S, Hu Q et al (2020) Synthesis and characterization of antiflammable vinyl ester resin nanocomposites with surface functionalized nanotitania. ES Mater Manuf 8:46–53. https://doi.org/10.30919/esmm5f709

  21. Liang C, Du Y, Wang Y et al (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00274-5

    Article  Google Scholar 

  22. Yin Y, Jiang B, Zhu X et al (2019) Investigation of thermostability of modified graphene oxide/methylsilicone resin nanocomposites. Engineered Science 5:73–78. https://doi.org/10.30919/es8d762

  23. Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotechnol 11:1026–1030. https://doi.org/10.1038/nnano.2016.262

    Article  CAS  Google Scholar 

  24. Back J-H, Hwang J-U, Lee Y-H et al (2018) Morphological study and mechanical property of epoxy-foam adhesives based on epoxy composites for automotive applications. Int J Adhes Adhes 87:124–129. https://doi.org/10.1016/j.ijadhadh.2018.09.010

  25. Kausar A, Rafique I, Muhammad B (2017) Aerospace application of polymer nanocomposite with carbon nanotube, graphite, graphene oxide, and nanoclay. Polym Plast Technol Eng 56:1438–1456. https://doi.org/10.1080/03602559.2016.1276594

    Article  CAS  Google Scholar 

  26. Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull 32:328–334. https://doi.org/10.1557/mrs2007.231

    Article  CAS  Google Scholar 

  27. Zhao S, Pei L, Li H et al (2021) Research progress in toughening modification of polybenzoxazine. Engineered Science 14:14–26. https://doi.org/10.30919/es8d1150

  28. Zhang Y, Zhan L (2020) Preparation and damping properties of Al2O3 hollow spheres/epoxy composites encapsulating Q195 steel pipes. ES Mater Manuf 10:60–66. https://doi.org/10.30919/esmm5f925

  29. Atta OM, Manan S, Ul-Islam MU et al (2021) Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food Agrofor 6:12–26. https://doi.org/10.30919/esfaf590

  30. Silva-Leyton R, Quijada R, Bastías R et al (2019) Polyethylene/graphene oxide composites toward multifunctional active packaging films. Compos Sci Technol 184:107888. https://doi.org/10.1016/j.compscitech.2019.107888

  31. Al-Harbi N Al, Hussein MA, Al-Hadeethi Y Al, Umar A (2022) Cellulose acetate-hydroxyapatite-bioglass-zirconia nanocomposite particles as potential biomaterial: synthesis, characterization, and biological properties for bone application. Engineered Science 17:70–82. https://doi.org/10.30919/es8d528

  32. Vyas S, Shukla A, Shivhare SJ et al (2022) High performance conducting nanocomposites polyaniline (PANI)-CuO with enhanced antimicrobial activity for biomedical applications. ES Mater Manuf 15:46–52. https://doi.org/10.30919/esmm5f468

  33. He Z, Yan Y, Zhang Z (2021) Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review. Energy 216:119223. https://doi.org/10.1016/j.energy.2020.119223

  34. Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174. https://doi.org/10.1016/j.mattod.2014.04.003

    Article  CAS  Google Scholar 

  35. Raimondo M, Guadagno L, Speranza V et al (2018) Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Compos Part B Eng 140:44–56. https://doi.org/10.1016/j.compositesb.2017.12.015

  36. Gu H, Zhang H, Ma C et al (2019) Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy. Carbon 142:131–140. https://doi.org/10.1016/j.carbon.2018.10.029

  37. Gu J, Dang J, Wu Y et al (2012) Flame-retardant, thermal, mechanical and dielectric properties of structural non-halogenated epoxy resin composites. Polym Plast Technol Eng 51:1198–1203. https://doi.org/10.1080/03602559.2012.694951

    Article  CAS  Google Scholar 

  38. Ahmed A, Sanada K (2019) Micromechanical modeling and experimental verification of self-healing microcapsules-based composites. Mech Mater 131:84–92. https://doi.org/10.1016/j.mechmat.2019.01.020

  39. Yuan W, Xiao Q, Li L, Xu T (2016) Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl Therm Eng 106:1067–1074. https://doi.org/10.1016/j.applthermaleng.2016.06.089

  40. Gu J, Zhang Q, Li H et al (2007) Study on preparation of SiO2/epoxy resin hybrid materials by means of sol-gel. Polym Plast Technol Eng 46:1129–1134. https://doi.org/10.1080/03602550701558033

    Article  CAS  Google Scholar 

  41. Gu J, Zhang Q, Dang J et al (2009) Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Polym Bull 62:689–697. https://doi.org/10.1007/s00289-009-0045-z

    Article  CAS  Google Scholar 

  42. Shi K, Shen Y, Zhang Y, Wang T (2019) A modified imidazole as a novel latent curing agent with toughening effect for epoxy. Engineered Science 5:66–72. https://doi.org/10.30919/es8d639

  43. Rimdusit S, Ishida H (2000) Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 41:7941–7949. https://doi.org/10.1016/S0032-3861(00)00164-6

  44. Jing X, Wei J, Liu Y et al (2020) Deployment analysis of aramid fiber reinforced shape-memory epoxy resin composites. Engineered Science 11:44–53. https://doi.org/10.30919/es8d1120

  45. Akhtar MW, Kim JS, Memon MA, Baloch MM (2020) Hybridization of hexagonal boron nitride nanosheets and multilayer graphene: enhanced thermal properties of epoxy composites. Compos Sci Technol 195:108183. https://doi.org/10.1016/j.compscitech.2020.108183

  46. Ruan K, Zhong X, Shi X et al (2021) Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater Today Phys 20:100456. https://doi.org/10.1016/j.mtphys.2021.100456

  47. Yang X, Zhong X, Zhang J, Gu J (2021) Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J Mater Sci Technol 68:209–215. https://doi.org/10.1016/j.jmst.2020.08.027

  48. Xu Y, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos - Part A Appl Sci Manuf 32:1749–1757. https://doi.org/10.1016/S1359-835X(01)00023-9

    Article  Google Scholar 

  49. Wang Z, Iizuka T, Kozako M et al (2011) Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength partI - sample preparations and thermal conductivity. IEEE Trans Dielectr Electr Insul 18:1963–1972. https://doi.org/10.1109/TDEI.2011.6118634

    Article  CAS  Google Scholar 

  50. Yao XF, Zhou D, Yeh HY (2008) Macro/microscopic fracture characterizations of SiO2/epoxy nanocomposites. Aerosp Sci Technol 12:223–230. https://doi.org/10.1016/j.ast.2007.03.005

  51. McGrath LM, Parnas RS, King SH et al (2008) Investigation of the thermal, mechanical, and fracture properties of alumina-epoxy composites. Polymer 49:999–1014. https://doi.org/10.1016/j.polymer.2007.12.014

    Article  CAS  Google Scholar 

  52. Mamunya YP, Davydenko V V, Pissis P, Lebedev E V (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38:1887–1897. https://doi.org/10.1016/S0014-3057(02)00064-2

  53. Corcione CE, Maffezzoli A (2013) Transport properties of graphite/epoxy composites: thermal, permeability and dielectric characterization. Polym Test 32:880–888. https://doi.org/10.1016/j.polymertesting.2013.03.023

  54. Chen YM, Ting JM (2002) Ultra high thermal conductivity polymer composites. Carbon 40:359–362. https://doi.org/10.1016/S0008-6223(01)00112-9

    Article  CAS  Google Scholar 

  55. Fan W, Li JL, Zheng YY et al (2016) Influence of thermo-oxidative aging on the thermal conductivity of carbon fiber fabric reinforced epoxy composites. Polym Degrad Stab 123:162–169. https://doi.org/10.1016/j.polymdegradstab.2015.11.016

    Article  CAS  Google Scholar 

  56. Zhou W (2011) Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites. J Mater Sci 46:3883–3889. https://doi.org/10.1007/s10853-011-5309-y

    Article  CAS  Google Scholar 

  57. Fu Y, He Z, Mo D, Lu S (2014) Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl Therm Eng 66:493–498. https://doi.org/10.1016/j.applthermaleng.2014.02.044

    Article  CAS  Google Scholar 

  58. Permal A, Devarajan M, Hung HL et al (2018) Controlled high filler loading of functionalized Al2O3-filled epoxy composites for LED thermal management. J Mater Eng Perform 27:1296–1307. https://doi.org/10.1007/s11665-018-3151-y

    Article  CAS  Google Scholar 

  59. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.39.1002.398

    Article  CAS  Google Scholar 

  60. Lemine AS, Zagho MM, Altahtamouni TM, Bensalah N (2018) Graphene a promising electrode material for supercapacitors—a review. Int J Energy Res 42:4284–4300. https://doi.org/10.1002/er.4170

  61. Suriani AB, Muqoyyanah MA et al (2020) Synthesis, transfer and application of graphene as a transparent conductive film: a review. Bull Mater Sci 43:310. https://doi.org/10.1007/s12034-020-02270-9

    Article  CAS  Google Scholar 

  62. Hosseinzadeh A, Bidmeshkipour S, Abdi Y et al (2018) Graphene based strain sensors: a comparative study on graphene and its derivatives. Appl Surf Sci 448:71–77. https://doi.org/10.1016/j.apsusc.2018.04.099

  63. Mehmood A, Mubarak NM, Khalid M et al (2020) Graphene based nanomaterials for strain sensor application—a review. J Environ Chem Eng 8:103743. https://doi.org/10.1016/j.jece.2020.103743

  64. Gijare M, Chaudhari S, Ekar S, Garje A (2021) Reduced graphene oxide based electrochemical nonenzymatic human serum glucose sensor. ES Mater Manuf 14:110–119. https://doi.org/10.30919/esmm5f486

  65. Hossain S, Abdalla AM, Suhaili SBH et al (2020) Nanostructured graphene materials utilization in fuel cells and batteries: a review. J Energy Storage 29:101386. https://doi.org/10.1016/j.est.2020.101386

  66. Lee SH, Kakati N, Jee SH et al (2011) Hydrothermal synthesis of PtRu nanoparticles supported on graphene sheets for methanol oxidation in direct methanol fuel cell. Mater Lett 65:3281–3284. https://doi.org/10.1016/j.matlet.2011.07.025

  67. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680. https://doi.org/10.1002/adma.200901079

  68. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25. https://doi.org/10.1016/j.polymer.2010.11.042

  69. Li A, Zhang C, Zhang Y-F (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9. https://doi.org/10.3390/polym9090437

  70. Sun Z, Huang X, Xia A et al (2021) Tunable bandwidth of negative permittivity from graphene-silicon carbide ceramics. Engineered Science 16:19–25. https://doi.org/10.30919/es8d564

  71. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  72. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  73. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  74. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  75. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308. https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  76. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  77. Jiao L, Zhang L, Wang X et al (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880. https://doi.org/10.1038/nature07919

    Article  CAS  Google Scholar 

  78. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  79. de Heer WA, Berger C, Wu X et al (2007) Epitaxial graphene. Solid State Commun 143:92–100. https://doi.org/10.1016/j.ssc.2007.04.023

  80. Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20:323202. https://doi.org/10.1088/0953-8984/20/32/323202

    Article  CAS  Google Scholar 

  81. Shi G, Araby S, Gibson CT et al (2018) Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv Funct Mater 28:1706705. https://doi.org/10.1002/adfm.201706705

  82. Kim SY, Noh YJ, Yu J (2015) Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Compos Part A Appl Sci Manuf 69:219–225. https://doi.org/10.1016/j.compositesa.2014.11.018

  83. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  84. Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49:3878–3888. https://doi.org/10.1016/j.eurpolymj.2013.10.008

    Article  CAS  Google Scholar 

  85. Bustero I, Gaztelumendi I, Obieta I et al (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3:31–40. https://doi.org/10.1007/s42114-020-00136-6

    Article  CAS  Google Scholar 

  86. Li J, Zhang P, He H et al (2019) Enhanced thermal transport properties of epoxy resin thermal interface materials. ES Energy Environ 4:41–47

    Google Scholar 

  87. Noh YJ, Joh H-I, Yu J et al (2015) Ultra-high dispersion of graphene in polymer composite via solvent freefabrication and functionalization. Sci Rep 5:9141. https://doi.org/10.1038/srep09141

    Article  CAS  Google Scholar 

  88. Kim HS, Bae HS, Yu J, Kim SY (2016) Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci Rep 6:26825. https://doi.org/10.1038/srep26825

    Article  CAS  Google Scholar 

  89. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1:415–439. https://doi.org/10.1007/s42114-018-0022-9

    Article  Google Scholar 

  90. Park J, Yan M (2013) Covalent functionalization of graphene with reactive intermediates. Acc Chem Res 46:181–189. https://doi.org/10.1021/ar300172h

    Article  CAS  Google Scholar 

  91. Chiang TH, Liu C, Lin Y (2015) The effect of an anhydride curing agent, an accelerant, and non-ionic surfactants on the electrical resistivity of graphene/epoxy composites. J Appl Polym Sci 132. https://doi.org/10.1002/app.41975

  92. Kazemi-Khasragh E, Bahari-Sambran F, Siadati SMH et al (2019) The effects of surface-modified graphene nanoplatelets on the sliding wear properties of basalt fibers-reinforced epoxy composites. J Appl Polym Sci 136:47986. https://doi.org/10.1002/app.47986

  93. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

  94. Dikin DA, Stankovich S, Zimney EJ et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460. https://doi.org/10.1038/nature06016

    Article  CAS  Google Scholar 

  95. Gómez-Navarro C, Weitz RT, Bittner AM et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503. https://doi.org/10.1021/nl072090c

    Article  CAS  Google Scholar 

  96. Chen Y, Hou X, Liao M et al (2020) Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem Eng J 381:122690. https://doi.org/10.1016/j.cej.2019.122690

  97. Yu J, Choi HK, Kim HS, Kim SY (2016) Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Compos Part A Appl Sci Manuf 88:79–85. https://doi.org/10.1016/j.compositesa.2016.05.022

  98. Noh YJ, Kim SY (2015) Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polym Test 45:132–138. https://doi.org/10.1016/j.polymertesting.2015.06.003

  99. Kazemi-Khasragh E, Bahari-Sambran F, Platzer C, Eslami-Farsani R (2020) The synergistic effect of graphene nanoplatelets–montmorillonite hybrid system on tribological behavior of epoxy-based nanocomposites. Tribol Int 151:106472. https://doi.org/10.1016/j.triboint.2020.106472

  100. Ghosh S, Bao W, Nika DL et al (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:555

    Article  CAS  Google Scholar 

  101. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

  102. Oliveira AEF, Braga GB, Tarley CRT, Pereira AC (2018) Thermally reduced graphene oxide: synthesis, studies and characterization. J Mater Sci 53:12005–12015. https://doi.org/10.1007/s10853-018-2473-3

    Article  CAS  Google Scholar 

  103. Nidamanuri N, Li Y, Li Q, Dong M (2020) Graphene and graphene oxide-based membranes for gas separation. Engineered Science 9:3–16. https://doi.org/10.30919/es8d128906

  104. Abdelkader AM, Cooper AJ, Dryfe RAW, Kinloch IA (2015) How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 7:6944–6956. https://doi.org/10.1039/C4NR06942K

    Article  CAS  Google Scholar 

  105. Zaman I, Kuan H-C, Dai J et al (2012) From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 4:4578–4586. https://doi.org/10.1039/C2NR30837A

    Article  CAS  Google Scholar 

  106. Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630. https://doi.org/10.1038/nmat3944

    Article  CAS  Google Scholar 

  107. Jeon I-Y, Choi H-J, Jung S-M et al (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393. https://doi.org/10.1021/ja3091643

    Article  CAS  Google Scholar 

  108. Brodie BC (1859) XIII. On the atomic weight of graphite. Phil Trans R Soc 149:249–259. https://doi.org/10.1098/rstl.1859.0013

  109. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Berichte der Dtsch Chem Gesellschaft 31:1481–1487. https://doi.org/10.1002/cber.18980310237

  110. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  111. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  112. Liu H, Mao Y (2021) Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Mater Manuf 13:3–22. https://doi.org/10.30919/esmm5f453

  113. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73. https://doi.org/10.1038/ncomms1067

    Article  CAS  Google Scholar 

  114. Li D, Müller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  115. Park S, An J, Potts JR et al (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023. https://doi.org/10.1016/j.carbon.2011.02.071

  116. Shin H-J, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992. https://doi.org/10.1002/adfm.200900167

  117. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682. https://doi.org/10.1021/nl080604h

    Article  CAS  Google Scholar 

  118. Wang G, Yang J, Park J et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195. https://doi.org/10.1021/jp710931h

    Article  CAS  Google Scholar 

  119. Pei S, Zhao J, Du J et al (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474. https://doi.org/10.1016/j.carbon.2010.08.006

  120. Dua V, Surwade SP, Ammu S et al (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chemie Int Ed 49:2154–2157. https://doi.org/10.1002/anie.200905089

  121. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

  122. Aghamohammadi H, Eslami-Farsani R, Torabian M, Amousa N (2020) Recent advances in one-pot functionalization of graphene using electrochemical exfoliation of graphite: a review study. Synth Met 269:116549. https://doi.org/10.1016/j.synthmet.2020.116549

  123. Ejigu A, Miller B, Kinloch IA, Dryfe RAW (2018) Optimisation of electrolytic solvents for simultaneous electrochemical exfoliation and functionalisation of graphene with metal nanostructures. Carbon 128:257–266. https://doi.org/10.1016/j.carbon.2017.11.081

  124. Liu J, Yang H, Zhen SG et al (2013) A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv 3:11745–11750. https://doi.org/10.1039/C3RA41366G

    Article  CAS  Google Scholar 

  125. Aghamohammadi H, Eslami-Farsani R (2020) An experimental investigation on the sulfur and nitrogen co-doping and oxidation of prepared graphene by electrochemical exfoliation of pencil graphite rods. Ceram Int 46:28860–28869. https://doi.org/10.1016/j.ceramint.2020.08.052

  126. Parvez K, Wu Z-S, Li R et al (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  Google Scholar 

  127. Zhang W, Zeng Y, Xiao N et al (2012) One-step electrochemical preparation of graphene-based heterostructures for Li storage. J Mater Chem 22:8455–8461. https://doi.org/10.1039/C2JM16315B

    Article  CAS  Google Scholar 

  128. Su C-Y, Lu A-Y, Xu Y et al (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339. https://doi.org/10.1021/nn200025p

    Article  CAS  Google Scholar 

  129. Shih C-J, Lin S, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132:14638–14648. https://doi.org/10.1021/ja1064284

    Article  CAS  Google Scholar 

  130. Yu P, Lowe SE, Simon GP, Zhong YL (2015) Electrochemical exfoliation of graphite and production of functional graphene. Curr Opin Colloid Interface Sci 20:329–338. https://doi.org/10.1016/j.cocis.2015.10.007

  131. Parviz D, Irin F, Shah SA et al (2016) Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene. Adv Mater 28:8796–8818. https://doi.org/10.1002/adma.201601889

  132. Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891. https://doi.org/10.1021/ja203725d

    Article  CAS  Google Scholar 

  133. Zhong YL, Swager TM (2012) Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J Am Chem Soc 134:17896–17899. https://doi.org/10.1021/ja309023f

    Article  CAS  Google Scholar 

  134. Yang S, Ricciardulli AG, Liu S et al (2017) Ultrafast delamination of graphite into high-quality graphene using alternating currents. Angew Chemie Int Ed 56:6669–6675. https://doi.org/10.1002/anie.201702076

  135. Achee TC, Sun W, Hope JT et al (2018) High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci Rep 8:14525. https://doi.org/10.1038/s41598-018-32741-3

    Article  CAS  Google Scholar 

  136. Shinde DB, Brenker J, Easton CD et al (2016) Shear assisted electrochemical exfoliation of graphite to graphene. Langmuir 32:3552–3559. https://doi.org/10.1021/acs.langmuir.5b04209

    Article  CAS  Google Scholar 

  137. Chen G, Weng W, Wu D et al (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42:753–759. https://doi.org/10.1016/j.carbon.2003.12.074

  138. Kovtyukhova NI, Wang Y, Berkdemir A et al (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem 6:957–963. https://doi.org/10.1038/nchem.2054

    Article  CAS  Google Scholar 

  139. Yoshida A, Hishiyama Y, Inagaki M (1991) Exfoliated graphite from various intercalation compounds. Carbon 29:1227–1231. https://doi.org/10.1016/0008-6223(91)90040-P

  140. Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189. https://doi.org/10.1016/j.compscitech.2005.10.014

    Article  CAS  Google Scholar 

  141. Yu A, Ramesh P, Itkis ME et al (2007) Graphite nanoplatelet - epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569. https://doi.org/10.1021/jp071761s

    Article  CAS  Google Scholar 

  142. Bracamonte MV, Lacconi GI, Urreta SE, Foa Torres LEF (2014) On the nature of defects in liquid-phase exfoliated graphene. J Phys Chem C 118:15455–15459. https://doi.org/10.1021/jp501930a

    Article  CAS  Google Scholar 

  143. Yi M, Shen Z, Liang S et al (2013) Water can stably disperse liquid-exfoliated graphene. Chem Commun 49:11059–11061. https://doi.org/10.1039/C3CC46457A

    Article  CAS  Google Scholar 

  144. Liu L, Shen Z, Yi M et al (2014) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4:36464–36470. https://doi.org/10.1039/C4RA05635C

    Article  CAS  Google Scholar 

  145. Varrla E, Paton KR, Backes C et al (2014) Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6:11810–11819. https://doi.org/10.1039/C4NR03560G

    Article  CAS  Google Scholar 

  146. Yi M, Shen Z (2014) Kitchen blender for producing high-quality few-layer graphene. Carbon 78:622–626. https://doi.org/10.1016/j.carbon.2014.07.035

  147. Rouzafzay F, Shidpour R, Al-Abri MZM et al (2020) Graphene@ZnO nanocompound for short-time water treatment under sun-simulated irradiation: effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation. J Alloys Compd 829:154614. https://doi.org/10.1016/j.jallcom.2020.154614

  148. Kairi MI, Dayou S, Kairi NI et al (2018) Toward high production of graphene flakes – a review on recent developments in their synthesis methods and scalability. J Mater Chem A 6:15010–15026. https://doi.org/10.1039/C8TA04255A

    Article  CAS  Google Scholar 

  149. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715. https://doi.org/10.1039/C5TA00252D

    Article  CAS  Google Scholar 

  150. Lv Y, Yu L, Jiang C et al (2014) Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route. RSC Adv 4:13350–13354. https://doi.org/10.1039/C3RA45060K

    Article  CAS  Google Scholar 

  151. Zhao S, Niu M, Peng P et al (2020) Edge oleylaminated graphene as ultra-stable lubricant additive for friction and wear reduction. Engineered Science 9:77–83. https://doi.org/10.30919/es8d807

  152. Amiri A, Naraghi M, Ahmadi G et al (2018) A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem 8:40–71. https://doi.org/10.1016/j.flatc.2018.03.004

  153. Liu L, Xiong Z, Hu D et al (2013) Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem Commun 49:7890–7892. https://doi.org/10.1039/C3CC43670E

    Article  CAS  Google Scholar 

  154. León V, Quintana M, Herrero MA et al (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938. https://doi.org/10.1039/C1CC14595A

    Article  Google Scholar 

  155. F Wang LT Drzal Y Qin Z Huang 2015 Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites J Mater Sci 50 1082 1093 https://doi.org/10.1007/s10853-014-8665-6

  156. Teng C, Xie D, Wang J et al (2017) Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv Funct Mater 27:1700240. https://doi.org/10.1002/adfm.201700240

  157. Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplatelets. In: 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. pp 1–6

  158. Fang X-Y, Yu X-X, Zheng H-M et al (2015) Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys Lett A 379:2245–2251. https://doi.org/10.1016/j.physleta.2015.06.063

  159. Lee C, Wei X, Li Q et al (2009) Elastic and frictional properties of graphene. Phys status solidi 246:2562–2567. https://doi.org/10.1002/pssb.200982329

    Article  CAS  Google Scholar 

  160. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049. https://doi.org/10.1021/nl801384y

    Article  CAS  Google Scholar 

  161. Burger N, Laachachi A, Ferriol M et al (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28. https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  CAS  Google Scholar 

  162. Kashfipour MA, Mehra N, Dent RS, Zhu J (2019) Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Engineered Science 8:11–18. https://doi.org/10.30919/es8d508

  163. Guo Y, Ruan K, Shi X et al (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134. https://doi.org/10.1016/j.compscitech.2020.108134

  164. Osman A, Elhakeem A, Kaytbay S, Ahmed A (2020) Influence of different nano-structured fillers on the performance of epoxy nanocomposites. Nano Hybrids Compos 29:51–60. https://doi.org/10.4028/www.scientific.net/NHC.29.51

    Article  Google Scholar 

  165. Vadivelu MA, Kumar CR, Joshi GM (2016) Polymer composites for thermal management: a review. Compos Interfaces 23:847–872. https://doi.org/10.1080/09276440.2016.1176853

    Article  CAS  Google Scholar 

  166. Yu W, Xie H, Yin L et al (2015) Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int J Therm Sci 91:76–82. https://doi.org/10.1016/j.ijthermalsci.2015.01.006

  167. Han H, Sun H, Lei F et al (2022) Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management. ES Mater Manuf 15:53–64. https://doi.org/10.30919/esmm5f523

  168. Lv X, Tang Y, Tian Q et al (2020) Ultra-stretchable membrane with high electrical and thermal conductivity via electrospinning and in-situ nanosilver deposition. Compos Sci Technol 200:108414. https://doi.org/10.1016/j.compscitech.2020.108414

  169. Sun J, Zhang X, Du Q et al (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf 13:53–65. https://doi.org/10.30919/esmm5f450

  170. Guo Y, Ruan K, Gu J (2021) Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater Today Phys 20:100449. https://doi.org/10.1016/j.mtphys.2021.100449

  171. Yang X, Liang C, Ma T et al (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230. https://doi.org/10.1007/s42114-018-0031-8

    Article  Google Scholar 

  172. Jasmee S, Omar G, Othaman SSC et al (2021) Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: a review. Polym Compos 42:2629–2652. https://doi.org/10.1002/pc.26029

  173. Shen X, Wang Z, Wu Y et al (2016) Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett 16:3585–3593. https://doi.org/10.1021/acs.nanolett.6b00722

    Article  CAS  Google Scholar 

  174. Guo Y, Wang S, Ruan K et al (2021) Highly thermally conductive carbon nanotubes pillared exfoliated graphite/polyimide composites. npj Flex Electron 5:16. https://doi.org/10.1038/s41528-021-00113-z

  175. Shen X, Zheng Q, Kim J-K (2021) Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog Mater Sci 115:100708. https://doi.org/10.1016/j.pmatsci.2020.100708

  176. Lian G, Tuan C-C, Li L et al (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104. https://doi.org/10.1021/acs.chemmater.6b01595

    Article  CAS  Google Scholar 

  177. Li XH, Liu P, Li X et al (2018) Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140:624–633. https://doi.org/10.1016/j.carbon.2018.09.016

    Article  CAS  Google Scholar 

  178. Li Q, Guo Y, Li W et al (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26:4459–4465. https://doi.org/10.1021/cm501473t

    Article  CAS  Google Scholar 

  179. Zhang Y, Ren Y, Bai S (2018) Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int J Heat Mass Transf 118:510–517. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.014

    Article  CAS  Google Scholar 

  180. Shen X, Wang Z, Wu Y et al (2018) A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater Horiz 5:275–284. https://doi.org/10.1039/C7MH00984D

    Article  CAS  Google Scholar 

  181. Wu S, Ladani RB, Zhang J et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618. https://doi.org/10.1016/j.carbon.2015.07.026

  182. Yan H, Wang R, Li Y, Long W (2015) Thermal conductivity of magnetically aligned graphene–polymer composites with Fe3O4-decorated graphene nanosheets. J Electron Mater 44:658–666. https://doi.org/10.1007/s11664-014-3561-z

    Article  CAS  Google Scholar 

  183. Saeidijavash M, Garg J, Grady B et al (2017) High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale 9:12867–12873. https://doi.org/10.1039/C7NR04686C

    Article  CAS  Google Scholar 

  184. Shtein M, Nadiv R, Buzaglo M et al (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater 27:2100–2106. https://doi.org/10.1021/cm504550e

    Article  CAS  Google Scholar 

  185. Wu Z, Xu C, Ma C et al (2019) Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv Mater 31:1900199. https://doi.org/10.1002/adma.201900199

  186. Kargar F, Barani Z, Salgado R et al (2018) Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl Mater Interfaces 10:37555–37565. https://doi.org/10.1021/acsami.8b16616

    Article  CAS  Google Scholar 

  187. Kim HS, Kim JH, Kim WY et al (2017) Volume control of expanded graphite based on inductively coupled plasma and enhanced thermal conductivity of epoxy composite by formation of the filler network. Carbon 119:40–46. https://doi.org/10.1016/j.carbon.2017.04.013

  188. Shenogina N, Shenogin S, Xue L, Keblinski P (2005) On the lack of thermal percolation in carbon nanotube composites. Appl Phys Lett 87:133106. https://doi.org/10.1063/1.2056591

    Article  CAS  Google Scholar 

  189. Kargar F, Barani Z, Balinskiy M et al (2019) Dual-functional graphene composites for electromagnetic shielding and thermal management. Adv Electron Mater 5:1800558. https://doi.org/10.1002/aelm.201800558

    Article  CAS  Google Scholar 

  190. Liu Z, Chen Y, Li Y et al (2019) Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 11:17600–17606. https://doi.org/10.1039/C9NR03968F

    Article  CAS  Google Scholar 

  191. Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91:201910. https://doi.org/10.1063/1.2813625

    Article  CAS  Google Scholar 

  192. Haggenmueller R, Guthy C, Lukes JR et al (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40:2417–2421. https://doi.org/10.1021/ma0615046

    Article  CAS  Google Scholar 

  193. Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells 95:1811–1818. https://doi.org/10.1016/j.solmat.2011.01.048

  194. Gu J, Xie C, Li H et al (2014) Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos 35:1087–1092. https://doi.org/10.1002/pc.22756

    Article  CAS  Google Scholar 

  195. Wu H, Drzal LT (2013) High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: Effect of percolation and particle size. Polym Compos 34:2148–2153. https://doi.org/10.1002/pc.22624

    Article  CAS  Google Scholar 

  196. Si W, Sun J, He X et al (2020) Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites. J Mater Chem C 8:3463–3475. https://doi.org/10.1039/C9TC06968B

    Article  CAS  Google Scholar 

  197. Bigg DM (1995) Thermal conductivity of heterophase polymer compositions. Thermal and electrical conductivity of polymer materials. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1–30

    Google Scholar 

  198. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518. https://doi.org/10.1016/j.coco.2020.100518

  199. Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum hall effect in graphene. Science 315:1379. https://doi.org/10.1126/science.1137201

    Article  CAS  Google Scholar 

  200. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415. https://doi.org/10.1002/adma.200903689

  201. Mattevi C, Eda G, Agnoli S et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583. https://doi.org/10.1002/adfm.200900166

  202. Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313. https://doi.org/10.1002/adv.10025

    Article  CAS  Google Scholar 

  203. Toker D, Azulay D, Shimoni N et al (2003) Tunneling and percolation in metal-insulator composite materials. Phys Rev B - Condens Matter Mater Phys 68:1–4. https://doi.org/10.1103/PhysRevB.68.041403

    Article  CAS  Google Scholar 

  204. Meng Q, Han S, Araby S et al (2019) Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives. J Adhes Sci Technol 33:1337–1356. https://doi.org/10.1080/01694243.2019.1595890

    Article  CAS  Google Scholar 

  205. Li Y, Zhang H, Porwal H et al (2017) Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236. https://doi.org/10.1016/j.compositesa.2017.01.007

  206. Wajid AS, Ahmed HST, Das S et al (2013) High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol Mater Eng 298:339–347. https://doi.org/10.1002/mame.201200043

    Article  CAS  Google Scholar 

  207. Hsiao M-C, Ma C-CM, Chiang J-C et al (2013) Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets. Nanoscale 5:5863–5871. https://doi.org/10.1039/C3NR01471A

    Article  CAS  Google Scholar 

  208. Wang Y, Weng GJ (2018) Electrical conductivity of carbon nanotube- and graphene-based nanocomposites. In: Meguid SA, Weng GJ (eds) Micromechanics and nanomechanics of composite solids. Springer International Publishing, Cham, pp 123–156

    Chapter  Google Scholar 

  209. Marsden AJ, Papageorgiou DG, Vallés C et al (2018) Electrical percolation in graphene-polymer composites. 2D Mater 5:. https://doi.org/10.1088/2053-1583/aac055

  210. Kernin A, Wan K, Liu Y et al (2019) The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites. Compos Sci Technol 169:224–231. https://doi.org/10.1016/j.compscitech.2018.10.036

  211. Meng Q, Jin J, Wang R et al (2014) Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology 25:125707. https://doi.org/10.1088/0957-4484/25/12/125707

    Article  CAS  Google Scholar 

  212. Lu C, Mai Y-W (2005) Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett 95:88303. https://doi.org/10.1103/PhysRevLett.95.088303

    Article  CAS  Google Scholar 

  213. AR Ravindran C Feng S Huang et al 2018 Effects of graphene nanoplatelet size and surface area on the AC electrical conductivity and dielectric constant of epoxy nanocomposites Polymers 10 https://doi.org/10.3390/polym10050477

  214. Ounaies Z, Park C, Wise KE et al (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol 63:1637–1646. https://doi.org/10.1016/S0266-3538(03)00067-8

  215. Weber M, Kamal MR (1997) Estimation of the volume resistivity of electrically conductive composites. Polym Compos 18:711–725. https://doi.org/10.1002/pc.10324

    Article  CAS  Google Scholar 

  216. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composites. J Mater Sci 42:3408–3418. https://doi.org/10.1007/s10853-007-1688-5

    Article  CAS  Google Scholar 

  217. Xia X, Wang Y, Zhong Z, Weng GJ (2016) A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. J Appl Phys 120:85102. https://doi.org/10.1063/1.4961401

    Article  CAS  Google Scholar 

  218. Polley MH, Boonstra BBST (1957) Carbon blacks for highly conductive rubber. Rubber Chem Technol 30:170–179. https://doi.org/10.5254/1.3542660

    Article  Google Scholar 

  219. Gau C, Kuo C-Y, Ko HS (2009) Electron tunneling in carbon nanotube composites. Nanotechnology 20:395705. https://doi.org/10.1088/0957-4484/20/39/395705

    Article  CAS  Google Scholar 

  220. Nieves CA, Ramos I, Pinto NJ, Zimbovskaya NA (2016) Electron transport mechanisms in polymer-carbon sphere composites. J Appl Phys 120:1–8. https://doi.org/10.1063/1.4955166

    Article  CAS  Google Scholar 

  221. Kim SY, Noh YJ, Yu J (2015) Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions. Compos Sci Technol 106:156–162. https://doi.org/10.1016/j.compscitech.2014.11.015

  222. Zare Y, Rhee KY (2017) Development of a model for electrical conductivity of polymer/graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind Eng Chem Res 56:9107–9115. https://doi.org/10.1021/acs.iecr.7b01348

    Article  CAS  Google Scholar 

  223. ASTM (2014) ASTM D638–14, standard test method for tensile properties of plastics. In: ASTM Int. West Conshohocken, PA

  224. Meng Q, Wu H, Zhao Z et al (2017) Free-standing, flexible, electrically conductive epoxy/graphene composite films. Compos Part A Appl Sci Manuf 92:42–50. https://doi.org/10.1016/j.compositesa.2016.10.028

  225. Wan Y-J, Tang L-C, Yan D et al (2013) Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos Sci Technol 82:60–68. https://doi.org/10.1016/j.compscitech.2013.04.009

  226. Wan Y-J, Gong L-X, Tang L-C et al (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A Appl Sci Manuf 64:79–89. https://doi.org/10.1016/j.compositesa.2014.04.023

  227. Han S, Meng Q, Qiu Z et al (2019) Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites Polymer 184 https://doi.org/10.1016/j.polymer.2019.121884

  228. Alves LO, Kawachi EY, Cassu SN (2019) An insight into molecular relaxation of organic-inorganic hybrids based on epoxy resin. Polym Test 78:105977. https://doi.org/10.1016/j.polymertesting.2019.105977

  229. Tang L-C, Wan Y-J, Yan D et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27. https://doi.org/10.1016/j.carbon.2013.03.050

  230. ASTM (2010) ASTM D790–10, standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. In: ASTM Int. West Conshohocken, PA

  231. Alasvand Zarasvand K, Golestanian H (2017) Investigating the effects of number and distribution of GNP layers on graphene reinforced polymer properties: physical, numerical and micromechanical methods. Compos Sci Technol 139:117–126. https://doi.org/10.1016/j.compscitech.2016.12.024

  232. ASTM (2015) ASTM D695–15, standard test method for compressive properties of rigid plastics. In: ASTM Int. West Conshohocken, PA

  233. Arnebold A, Hartwig A (2016) Fast switchable, epoxy based shape-memory polymers with high strength and toughness. Polymer 83:40–49. https://doi.org/10.1016/j.polymer.2015.12.007

  234. Koo B, Subramanian N, Chattopadhyay A (2016) Molecular dynamics study of brittle fracture in epoxy-based thermoset polymer. Compos Part B Eng 95:433–439. https://doi.org/10.1016/j.compositesb.2016.04.012

  235. Park YT, Qian Y, Chan C et al (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25:575–585. https://doi.org/10.1002/adfm.201402553

  236. Atif R, Shyha I, Inam F (2016) Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-a review Polymers 8 https://doi.org/10.3390/polym8080281

  237. Meng Q, Araby S, Ma J (2015) Toughening mechanisms in epoxy/graphene platelets composites

  238. Wang J, Jin X, Li C et al (2019) Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chem Eng J 370:831–854. https://doi.org/10.1016/j.cej.2019.03.229

  239. Chandrasekaran S, Sato N, Tölle F et al (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99. https://doi.org/10.1016/j.compscitech.2014.03.014

  240. Zaman I, Phan TT, Kuan H-C et al (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611. https://doi.org/10.1016/j.polymer.2011.02.003

  241. Han S, Chand A, Araby S et al (2019) Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite. Nanotechnology 31:75702. https://doi.org/10.1088/1361-6528/ab5042

    Article  CAS  Google Scholar 

  242. Moriche R, Sánchez M, Jiménez-Suárez A et al (2016) Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos Sci Technol 123:65–70. https://doi.org/10.1016/j.compscitech.2015.12.002

  243. Embrey L, Nautiyal P, Loganathan A et al (2017) Three-dimensional graphene foam induces multifunctionality in epoxy nanocomposites by simultaneous improvement in mechanical, thermal, and electrical properties. ACS Appl Mater Interfaces 9:39717–39727. https://doi.org/10.1021/acsami.7b14078

    Article  CAS  Google Scholar 

  244. Stavropoulos SG, Sanida A, Psarras GC (2021) Carbon allotropes/epoxy nanocomposites as capacitive energy storage/harvesting systems. Appl Sci 11. https://doi.org/10.3390/app11157059

  245. Yang C, Wei H, Guan L et al (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3:14929–14941. https://doi.org/10.1039/C5TA02707A

    Article  CAS  Google Scholar 

  246. Barani Z, Kargar F, Godziszewski K et al (2020) Graphene epoxy-based composites as efficient electromagnetic absorbers in the extremely high-frequency band. ACS Appl Mater Interfaces 12:28635–28644. https://doi.org/10.1021/acsami.0c06729

    Article  CAS  Google Scholar 

  247. Huangfu Y, Liang C, Han Y et al (2019) Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos Sci Technol 169:70–75. https://doi.org/10.1016/j.compscitech.2018.11.012

  248. Su Z, Wang H, Tian K et al (2018) The combination of π-π interaction and covalent bonding can synergistically strengthen the flexible electrical insulating nanocomposites with well adhesive properties and thermal conductivity. Compos Sci Technol 155:1–10. https://doi.org/10.1016/j.compscitech.2017.09.018

  249. Ghori SW, Siakeng R, Rasheed M et al (2018) 2 - The role of advanced polymer materials in aerospace. In: Jawaid M, Thariq M (eds) Sustainable composites for aerospace applications. Woodhead Publishing, pp 19–34

    Chapter  Google Scholar 

  250. Guadagno L, Naddeo C, Raimondo M et al (2017) Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology 28:94001. https://doi.org/10.1088/1361-6528/aa583d

    Article  CAS  Google Scholar 

  251. Chatterjee S, Nafezarefi F, Tai NH et al (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5386. https://doi.org/10.1016/j.carbon.2012.07.021

  252. Tien DH, Park J, Han SA et al (2011) Electrical and thermal conductivities of stycast 1266 epoxy/graphite composites. J Korean Phys Soc 59:2760–2764. https://doi.org/10.3938/jkps.59.2760

    Article  CAS  Google Scholar 

  253. Serena Saw WP, Mariatti M (2012) Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications. J Mater Sci Mater Electron 23:817–824. https://doi.org/10.1007/s10854-011-0499-2

    Article  CAS  Google Scholar 

  254. Prolongo SG, Moriche R, Del Rosario G et al (2016) Joule effect self-heating of epoxy composites reinforced with graphitic nanofillers. J Polym Res 23:189. https://doi.org/10.1007/s10965-016-1092-4

    Article  CAS  Google Scholar 

  255. Li A, Zhang C, Zhang Y-F (2017) Graphene nanosheets-filled epoxy composites prepared by a fast dispersion method. J Appl Polym Sci 134:45152. https://doi.org/10.1002/app.45152

    Article  CAS  Google Scholar 

  256. Zakaria MR, Abdul Kudus MH, Md. Akil H, Mohd Thirmizir MZ (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos Part B Eng 119:57–66. https://doi.org/10.1016/j.compositesb.2017.03.023

  257. Zakaria MR, Abdul Kudus MH, Md Akil H et al (2019) Comparative study of single-layer graphene and single-walled carbon nanotube-filled epoxy nanocomposites based on mechanical and thermal properties. Polym Compos 40:E1840–E1849. https://doi.org/10.1002/pc.25173

  258. Jia J, Sun X, Lin X et al (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8:5774–5783. https://doi.org/10.1021/nn500590g

    Article  CAS  Google Scholar 

  259. Liu Z, Shen D, Yu J et al (2016) Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Adv 6:22364–22369. https://doi.org/10.1039/C5RA27223H

    Article  CAS  Google Scholar 

  260. Song P, Liang C, Wang L et al (2019) Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos Sci Technol 181:107698. https://doi.org/10.1016/j.compscitech.2019.107698

  261. Sun Y, He Y, Tang B et al (2017) Influence from the types of surface functional groups of RGO on the performances of thermal interface materials. RSC Adv 7:55790–55795. https://doi.org/10.1039/C7RA12034F

    Article  CAS  Google Scholar 

  262. Chen H, Ginzburg VV, Yang J et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85. https://doi.org/10.1016/j.progpolymsci.2016.03.001

    Article  CAS  Google Scholar 

  263. Huang X, Zhi C, Lin Y et al (2020) Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng R Reports 142:100577. https://doi.org/10.1016/j.mser.2020.100577

  264. Ruan K, Guo Y, Lu C et al (2021) Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021:8438614. https://doi.org/10.34133/2021/8438614

  265. Guo Y, Xu G, Yang X et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015. https://doi.org/10.1039/C8TC00452H

    Article  CAS  Google Scholar 

  266. Qiu L, Zou H, Wang X et al (2019) Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 141:497–505. https://doi.org/10.1016/j.carbon.2018.09.073

  267. Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758. https://doi.org/10.1021/nl803279t

    Article  CAS  Google Scholar 

  268. Georgakilas V, Otyepka M, Bourlinos AB et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214. https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  269. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F (2015) Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des 66:142–149. https://doi.org/10.1016/j.matdes.2014.10.047

  270. Wang X, Xing W, Zhang P et al (2012) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72:737–743. https://doi.org/10.1016/j.compscitech.2012.01.027

    Article  CAS  Google Scholar 

  271. Depaifve S, Federico CE, Ruch D et al (2020) Nitrene functionalization as a new approach for reducing the interfacial thermal resistance in graphene nanoplatelets/epoxy nanocomposites. Carbon 167:646–657. https://doi.org/10.1016/j.carbon.2020.06.035

  272. Wang Y, Zhan HF, Xiang Y et al (2015) Effect of covalent functionalization on thermal transport across graphene–polymer interfaces. J Phys Chem C 119:12731–12738. https://doi.org/10.1021/acs.jpcc.5b02920

    Article  CAS  Google Scholar 

  273. Tang G, Jiang Z-G, Li X et al (2014) Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Compos Part B Eng 67:564–570. https://doi.org/10.1016/j.compositesb.2014.08.013

  274. Gu J, Yang X, Lv Z et al (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.081

    Article  CAS  Google Scholar 

  275. Ji X, Xu Y, Zhang W et al (2016) Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos Part A Appl Sci Manuf 87:29–45. https://doi.org/10.1016/j.compositesa.2016.04.011

  276. Cao L, Liu X, Na H et al (2013) How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A ( DGEBA)/graphene composites. J Mater Chem A 1:5081–5088. https://doi.org/10.1039/c3ta01700a

    Article  CAS  Google Scholar 

  277. Teng CC, Ma CCM, Lu CH et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116. https://doi.org/10.1016/j.carbon.2011.06.095

    Article  CAS  Google Scholar 

  278. Fang Q, Shen Y, Chen B (2015) Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: a review. Chem Eng J 264:753–771. https://doi.org/10.1016/j.cej.2014.12.001

  279. Kaur M, Kaur M, Sharma VK (2018) Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment. Adv Colloid Interface Sci 259:44–64. https://doi.org/10.1016/j.cis.2018.07.001

  280. Liang H-W, Zhuang X, Brüller S et al (2014) Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun 5:4973. https://doi.org/10.1038/ncomms5973

    Article  CAS  Google Scholar 

  281. Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R (2021) A review study on the recent advances in developing the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries. Ceram Int 47:22269–22301. https://doi.org/10.1016/j.ceramint.2021.05.048

  282. Mou Z, Wu Y, Sun J et al (2014) TiO2 nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 6:13798–13806. https://doi.org/10.1021/am503244w

    Article  CAS  Google Scholar 

  283. Wang X, Shi G (2015) An introduction to the chemistry of graphene. Phys Chem Chem Phys 17:28484–28504. https://doi.org/10.1039/C5CP05212B

    Article  CAS  Google Scholar 

  284. Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552. https://doi.org/10.1038/nature09579

    Article  CAS  Google Scholar 

  285. Mortazavi B, Rajabpour A, Ahzi S et al (2012) Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun 152:261–264. https://doi.org/10.1016/j.ssc.2011.11.035

  286. Yang H, Tang Y, Liu Y et al (2014) Thermal conductivity of graphene nanoribbons with defects and nitrogen doping. React Funct Polym 79:29–35. https://doi.org/10.1016/j.reactfunctpolym.2014.03.006

  287. Wang X, Sun G, Routh P et al (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098. https://doi.org/10.1039/C4CS00141A

    Article  CAS  Google Scholar 

  288. Shahzad F, Kumar P, Yu S et al (2015) Sulfur-doped graphene laminates for EMI shielding applications. J Mater Chem C 3:9802–9810. https://doi.org/10.1039/C5TC02166A

    Article  CAS  Google Scholar 

  289. Huang Y, Wu D, Dianat A et al (2017) Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries. J Mater Chem A 5:1588–1594. https://doi.org/10.1039/C6TA09161J

    Article  CAS  Google Scholar 

  290. Beckert M, Tölle FJ, Bruchmann B, Mülhaupt R (2015) Nitrogen-doped multilayer graphene as functional filler for carbon/polyamide 12 nanocomposites. Macromol Mater Eng 300:785–792. https://doi.org/10.1002/mame.201500020

  291. Pu N-W, Peng Y-Y, Wang P-C et al (2014) Application of nitrogen-doped graphene nanosheets in electrically conductive adhesives. Carbon 67:449–456. https://doi.org/10.1016/j.carbon.2013.10.017

  292. Tschoppe K, Beckert F, Beckert M, Mülhaupt R (2015) Thermally reduced graphite oxide and mechanochemically functionalized graphene as functional fillers for epoxy nanocomposites. Macromol Mater Eng 300:140–152. https://doi.org/10.1002/mame.201400245

  293. Lin S, Ju S, Shi G et al (2019) Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials. J Mater Sci 54:7165–7179. https://doi.org/10.1007/s10853-019-03372-4

    Article  CAS  Google Scholar 

  294. Qing Y, Li Y, Luo F (2020) Electromagnetic interference shielding properties of nitrogen-doped graphene/epoxy composites. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-020-03938-y

    Article  Google Scholar 

  295. Guo W, Wang X, Gangireddy CSR et al (2019) Cardanol derived benzoxazine in combination with boron-doped graphene toward simultaneously improved toughening and flame retardant epoxy composites. Compos Part A Appl Sci Manuf 116:13–23. https://doi.org/10.1016/j.compositesa.2018.10.010

  296. Feng Y, He C, Wen Y et al (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151. https://doi.org/10.1016/j.jhazmat.2017.12.019

  297. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

  298. Hwang S-H, Park Y-B, Yoon KH, Bang DS (2011) Smart materials and structures based on carbon nanotube composites. In: Yellampalli S (ed) Carbon nanotubes. IntechOpen, Rijeka

  299. Imran KA, Shivakumar KN (2018) Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties. J Reinf Plast Compos 37:118–133. https://doi.org/10.1177/0731684417736143

    Article  CAS  Google Scholar 

  300. Chang H, Liu H, Tan C (2015) Using supercritical Co2-assisted mixing to prepare graphene/carbon nanotube/epoxy nanocomposites. Polymer 75:125–133

    Article  CAS  Google Scholar 

  301. Poutrel Q-A, Wang Z, Wang D et al (2017) Effect of pre and post-dispersion on electro-thermo-mechanical properties of a graphene enhanced epoxy. Appl Compos Mater 24:313–336. https://doi.org/10.1007/s10443-016-9541-0

    Article  CAS  Google Scholar 

  302. Yang S-Y, Lin W-N, Huang Y-L et al (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803. https://doi.org/10.1016/j.carbon.2010.10.014

  303. He Z, Zhang X, Chen M et al (2013) Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. J Appl Polym Sci 129:3366–3372. https://doi.org/10.1002/app.39096

    Article  CAS  Google Scholar 

  304. Messina E, Leone N, Foti A et al (2016) Double-wall nanotubes and graphene nanoplatelets for hybrid conductive adhesives with enhanced thermal and electrical conductivity. ACS Appl Mater Interfaces 8:23244–23259. https://doi.org/10.1021/acsami.6b06145

    Article  CAS  Google Scholar 

  305. Prolongo SG, Redondo O, Campo M, Ureña A (2019) Heat dissipation on electrical conductor composites by combination of carbon nanotubes and graphene nanoplatelets. J Coatings Technol Res 16:491–498. https://doi.org/10.1007/s11998-018-0127-7

    Article  CAS  Google Scholar 

  306. Prolongo SG, Moriche R, Ureña A et al (2018) Carbon nanotubes and graphene into thermosetting composites: Synergy and combined effect. J Appl Polym Sci 135:46475. https://doi.org/10.1002/app.46475

    Article  CAS  Google Scholar 

  307. Wang B, Dou S, Li W, Gao Y (2020) Multifunctional reduced graphene oxide/carbon nanotubes/epoxy resin nanocomposites based on carbon nanohybrid preform. Soft Mater 18:89–100. https://doi.org/10.1080/1539445X.2019.1688833

    Article  CAS  Google Scholar 

  308. Ji C, Yan C, Wang Y et al (2019) Thermal conductivity enhancement of CNT/MoS2/graphene–epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos Part B Eng 163:363–370. https://doi.org/10.1016/j.compositesb.2018.11.005

  309. Liang C, Song P, Ma A et al (2019) Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos Sci Technol 181:107683. https://doi.org/10.1016/j.compscitech.2019.107683

  310. Zhang K, Zhang Y, Wang S (2013) Effectively decoupling electrical and thermal conductivity of polymer composites. Carbon 65:105–111. https://doi.org/10.1016/j.carbon.2013.08.005

    Article  CAS  Google Scholar 

  311. Bo T, Zhengwei W, Huang W et al (2017) RGO and three-dimensional graphene networks co-modified TIMs with high performances. Nanoscale Res Lett 12:527. https://doi.org/10.1186/s11671-017-2298-z

    Article  CAS  Google Scholar 

  312. An F, Li X, Min P et al (2018) Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl Mater Interfaces 10:17383–17392. https://doi.org/10.1021/acsami.8b04230

    Article  CAS  Google Scholar 

  313. Liang C, Qiu H, Han Y et al (2019) Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C 7:2725–2733. https://doi.org/10.1039/C8TC05955A

    Article  CAS  Google Scholar 

  314. Krieg AS, King JA, Jaszczak DC et al (2018) Tensile and conductivity properties of epoxy composites containing carbon black and graphene nanoplatelets. J Compos Mater 52:3909–3918. https://doi.org/10.1177/0021998318771460

    Article  CAS  Google Scholar 

  315. Ohayon-Lavi A, Buzaglo M, Ligati S et al (2020) Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon 163:333–340. https://doi.org/10.1016/j.carbon.2020.03.026

  316. Ma X, Wang W, Qi X et al (2021) Highly thermally conductive epoxy composites with anti-friction performance achieved by carbon nanofibers assisted graphene nanoplatelets assembly. Eur Polym J 151:110443. https://doi.org/10.1016/j.eurpolymj.2021.110443

  317. Sun Y, Yin Y, Mayers BT et al (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745. https://doi.org/10.1021/cm020587b

    Article  CAS  Google Scholar 

  318. Skrabalak SE, Wiley BJ, Kim M et al (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077–2081. https://doi.org/10.1021/nl800910d

    Article  CAS  Google Scholar 

  319. Chou T, Tsai H, Hsu C, Yip M (2018) Fabrication and characteristics of graphene-reinforced silver nanowire/polybenzoxazine/epoxy copolymer composite thin films. Polym Int 67:1081–1093. https://doi.org/10.1002/pi.5614

    Article  CAS  Google Scholar 

  320. Zhang L, Zhu W, Huang Y, Qi S (2019) Synergetic effects of silver nanowires and graphene oxide on thermal conductivity of epoxy composites Nanomaterials 9. https://doi.org/10.3390/nano9091264

  321. Zhang Z, Li W, Wang X et al (2019) Low effective content of reduced graphene oxide/silver nanowire hybrids in epoxy composites with enhanced conductive properties. J Mater Sci Mater Electron 30:7384–7392. https://doi.org/10.1007/s10854-019-01050-4

    Article  CAS  Google Scholar 

  322. Barani Z, Mohammadzadeh A, Geremew A et al (2020) Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles. Adv Funct Mater 30:1904008. https://doi.org/10.1002/adfm.201904008

    Article  CAS  Google Scholar 

  323. Yang X, Fan S, Li Y et al (2020) Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos Part A Appl Sci Manuf 128:105670. https://doi.org/10.1016/j.compositesa.2019.105670

  324. Huang Z, Wang T, Zhang X et al (2016) Preparation of tourmaline/graphene oxide and its application in thermal interface materials. J Compos Mater 50:3953–3960. https://doi.org/10.1177/0021998316630393

    Article  CAS  Google Scholar 

  325. Jiang Y, Sun R, Zhang H-B et al (2017) Graphene-coated ZnO tetrapod whiskers for thermally and electrically conductive epoxy composites. Compos Part A Appl Sci Manuf 94:104–112. https://doi.org/10.1016/j.compositesa.2016.12.009

  326. Aradhana R, Mohanty S, Nayak SK (2019) Novel electrically conductive epoxy/reduced graphite oxide/silica hollow microspheres adhesives with enhanced lap shear strength and thermal conductivity. Compos Sci Technol 169:86–94. https://doi.org/10.1016/j.compscitech.2018.11.008

    Article  CAS  Google Scholar 

  327. Lewis JS, Barani Z, Magana AS et al (2019) Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater Res Express 6:85325. https://doi.org/10.1088/2053-1591/ab2215

    Article  CAS  Google Scholar 

  328. Wang S, Cao M, Cong F et al (2021) Mechanical and thermal properties of graphene and carbon nanotube reinforced epoxy/boron nitride adhesives. J Adhes Sci Technol 1 17. https://doi.org/10.1080/01694243.2021.1877017

  329. Nouri-Borujerdi A, Kazemi-Ranjbar S (2021) Thermal and electrical conductivity of a graphene-based hybrid filler epoxy composite. J Mater Sci. https://doi.org/10.1007/s10853-021-06272-8

    Article  Google Scholar 

  330. Pourrahimi AM, Hoang TA, Liu D et al (2016) Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: a novel approach toward ultralow electrical conductivity insulations. Adv Mater 28:8651–8657. https://doi.org/10.1002/adma.201603291

    Article  CAS  Google Scholar 

  331. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28

    Article  CAS  Google Scholar 

  332. Kim J, Im H, Kim J, Kim J (2012) Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites. J Mater Sci 47:1418–1426. https://doi.org/10.1007/s10853-011-5922-9

    Article  CAS  Google Scholar 

  333. Zong P, Fu J, Chen L et al (2016) Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites. RSC Adv 6:10498–10506. https://doi.org/10.1039/C5RA24885J

    Article  CAS  Google Scholar 

  334. Zhao Y, Wu Z, Guo S et al (2022) Hyperbranched graphene oxide structure-based epoxy nanocomposite with simultaneous enhanced mechanical properties, thermal conductivity, and superior electrical insulation. Compos Sci Technol 217:109082. https://doi.org/10.1016/j.compscitech.2021.109082

  335. Aradhana R, Mohanty S, Nayak SK (2018) Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer 141:109–123. https://doi.org/10.1016/j.polymer.2018.03.005

    Article  CAS  Google Scholar 

  336. Jarosinski L, Rybak A, Gaska K et al (2017) Enhanced thermal conductivity of graphene nanoplatelets epoxy composites. Mater Sci Pol 35:382–389. https://doi.org/10.1515/msp-2017-0028

    Article  CAS  Google Scholar 

  337. Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Reports 132:1–22. https://doi.org/10.1016/j.mser.2018.06.002

  338. Li M, Tang C, Zhang L et al (2018) A thermally conductive and insulating epoxy polymer composite with hybrid filler of modified copper nanowires and graphene oxide. J Mater Sci Mater Electron 29:4948–4954. https://doi.org/10.1007/s10854-017-8454-5

    Article  Google Scholar 

  339. Han Y, Shi X, Yang X et al (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944. https://doi.org/10.1016/j.compscitech.2019.107944

  340. Zhang R-H, Shi X-T, Tang L et al (2020) Thermally conductive and insulating epoxy composites by synchronously incorporating si-sol functionalized glass fibers and boron nitride fillers. Chinese J Polym Sci 38:730–739. https://doi.org/10.1007/s10118-020-2391-0

    Article  CAS  Google Scholar 

  341. Gu J, Ruan K (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett 13:110. https://doi.org/10.1007/s40820-021-00640-4

    Article  CAS  Google Scholar 

  342. Wu Z-S, Zhou G, Yin L-C et al (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

  343. Wang R, Zhuo D, Weng Z et al (2015) A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J Mater Chem A 3:9826–9836. https://doi.org/10.1039/C5TA00722D

    Article  CAS  Google Scholar 

  344. Pu X, Bin ZH, Li X et al (2014) Thermally conductive and electrically insulating epoxy nanocomposites with silica-coated graphene. RSC Adv 4:15297–15303. https://doi.org/10.1039/c4ra00518j

    Article  CAS  Google Scholar 

  345. Du F, Yang W, Zhang F et al (2015) Enhancing the heat transfer efficiency in graphene–epoxy nanocomposites using a magnesium oxide–graphene hybrid structure. ACS Appl Mater Interfaces 7:14397–14403. https://doi.org/10.1021/acsami.5b03196

    Article  CAS  Google Scholar 

  346. Sun R, Yao H, Bin ZH et al (2016) Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos Sci Technol 137:16–23. https://doi.org/10.1016/j.compscitech.2016.10.017

    Article  CAS  Google Scholar 

  347. Pan Y-T, Wan J, Zhao X et al (2017) Interfacial growth of MOF-derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites. Chem Eng J 330:1222–1231. https://doi.org/10.1016/j.cej.2017.08.059

    Article  CAS  Google Scholar 

  348. Fu J, Zong P, Chen L et al (2016) A facile approach to covalently functionalized graphene nanosheet hybrids and polymer nanocomposites. ChemNanoMat 2:830–839. https://doi.org/10.1002/cnma.201600131

    Article  CAS  Google Scholar 

  349. Jiang J, Liu F, Zhuang K et al (2017) Composites of epoxy/graphene-modified-diamond filler show enhanced thermal conductivity and high electrical insulation. RSC Adv 7:40761–40766. https://doi.org/10.1039/C7RA07272D

    Article  CAS  Google Scholar 

  350. Wang Y, Yu J, Dai W et al (2014) Epoxy composites filled with one-dimensional SiC nanowires-two-dimensional graphene nanoplatelets hybrid nanofillers. RSC Adv 4:59409–59417. https://doi.org/10.1039/c4ra07878k

    Article  CAS  Google Scholar 

  351. He J, Wang H, Su Z et al (2019) Thermal conductivity and electrical insulation of epoxy composites with graphene-SiC nanowires and BaTiO3. Compos Part A Appl Sci Manuf 117:287–298. https://doi.org/10.1016/j.compositesa.2018.10.031

    Article  CAS  Google Scholar 

  352. Shi X, Zhang R, Ruan K et al (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J Mater Sci Technol 82:239–249. https://doi.org/10.1016/j.jmst.2021.01.018

  353. Huang T, Zeng X, Yao Y et al (2016) Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity. RSC Adv 6:35847–35854. https://doi.org/10.1039/C5RA27315C

    Article  CAS  Google Scholar 

  354. Huang T, Yao Y, Meng F (2016) Graphene encapsulating boron nitride electrostatic assemblies for fabrication of polymer composites with high thermal conductivity. Adv Compos Lett 25:147–150. https://doi.org/10.1177/096369351602500605

    Article  Google Scholar 

  355. Wu K, Lei C, Yang W et al (2016) Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss. Compos Sci Technol 134:191–200. https://doi.org/10.1016/j.compscitech.2016.08.015

  356. Su Z, Wang H, Ye X et al (2018) Synergistic enhancement of anisotropic thermal transport flexible polymer composites filled with multi-layer graphene (mG) and mussel-inspiring modified hexagonal boron nitride (h-BN). Compos Part A Appl Sci Manuf 111:12–22

    Article  CAS  Google Scholar 

  357. Ribeiro H, Trigueiro JPC, Owuor PS et al (2018) Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Compos Sci Technol 159:103–110. https://doi.org/10.1016/j.compscitech.2018.01.032

  358. Owais M, Zhao J, Imani A et al (2019) Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos Part A Appl Sci Manuf 117:11–22. https://doi.org/10.1016/j.compositesa.2018.11.006

    Article  CAS  Google Scholar 

  359. Ren J, Li Q, Yan L et al (2020) Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater Des 191:108663.

  360. He J, Wang H, Qu Q et al (2020) Three-dimensional network constructed by vertically oriented multilayer graphene and SiC nanowires for improving thermal conductivity and operating safety of epoxy composites with ultralow loading. Compos Part A Appl Sci Manuf 139:106062. https://doi.org/10.1016/j.compositesa.2020.106062

  361. Heo Y, Im H, Kim J, Kim J (2012) The influence of Al(OH)3-coated graphene oxide on improved thermal conductivity and maintained electrical resistivity of Al2O3/epoxy composites. J Nanoparticle Res 14:1196. https://doi.org/10.1007/s11051-012-1196-7

    Article  CAS  Google Scholar 

  362. Zha J, Zhu T, Wu Y et al (2015) Tuning of thermal and dielectric properties for epoxy composites filled with electrospun alumina fibers and graphene nanoplatelets through hybridization. J Mater Chem C 3:7195–7202. https://doi.org/10.1039/c5tc01552a

    Article  CAS  Google Scholar 

  363. Rybak A, Jarosinski L, Gaska K, Kapusta C (2018) Graphene nanoplatelet-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity. Polym Compos 39:E1682-E1691.

  364. Nayak SK, Mohanty S, Nayak SK (2019) Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application. SN Appl Sci 1:337. https://doi.org/10.1007/s42452-019-0346-2

  365. Nayak SK, Mohanty S, Nayak SK (2020) Thermal, electrical and mechanical properties of expanded graphite and micro-SiC filled hybrid epoxy composite for electronic packaging applications. J Electron Mater 49:212–225. https://doi.org/10.1007/s11664-019-07681-x

    Article  CAS  Google Scholar 

  366. Oh H, Kim Y, Wie J et al (2020) Tailoring of Si–C–N–O ceramic-coated reduced graphene oxide by oil/water-solution process for high thermal conductive epoxy composite with electrical insulation. Compos Sci Technol 197:108257. https://doi.org/10.1016/j.compscitech.2020.108257

  367. Lee Sanchez WA, Huang C-Y, Chen J-X et al (2021). Enhanced thermal conductivity of epoxy composites filled with Al2O3/boron nitride hybrids for underfill encapsulation materials. Polymers 13. https://doi.org/10.3390/polym13010147

  368. Mi X, Zhong L, Wei F et al (2019) Fabrication of halloysite nanotubes/reduced graphene oxide hybrids for epoxy composites with improved thermal and mechanical properties. Polym Test 76:473–480. https://doi.org/10.1016/j.polymertesting.2019.04.007

  369. Osman A, Elhakeem A, Kaytbay S, Ahmed A (2021) Thermal, electrical and mechanical properties of graphene/nano-alumina/epoxy composites. Mater Chem Phys 257:123809. https://doi.org/10.1016/j.matchemphys.2020.123809

  370. Warzoha RJ, Fleischer AS (2014) Heat flow at nanoparticle interfaces. Nano Energy 6:137–158. https://doi.org/10.1016/j.nanoen.2014.03.014

  371. Yao Y, Sun J, Zeng X et al (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14:1–12. https://doi.org/10.1002/smll.201704044

    Article  CAS  Google Scholar 

  372. Guo Y, He J, Wang H et al (2019) Boron nitride-graphene sponge as skeleton filled with epoxy resin for enhancing thermal conductivity and electrical insulation. Polym Compos 40. https://doi.org/10.1002/pc.25095

  373. Yang GY, Chen L, Jiang P et al (2016) Fabrication of tunable 3D graphene mesh network with enhanced electrical and thermal properties for high-rate aluminum-ion battery application. RSC Adv 6:47655–47660. https://doi.org/10.1039/C6RA06467A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalla Ahmed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, A., Elhakeem, A., Kaytbay, S. et al. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv Compos Hybrid Mater 5, 547–605 (2022). https://doi.org/10.1007/s42114-022-00423-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00423-4

Keywords

Navigation