Skip to main content
Log in

Geomechanical Field Survey to Identify an Unstable Rock Slope: The Passo della Morte Case History (NE Italy)

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In this work, a geomechanical study performed on a natural rock slope located in north-eastern Italy (Tagliamento River valley, Friuli Venezia Giulia Region) is presented. The detailed geomechanical survey has provided a large bulk of field data proving that the investigated limestone slope is characterized by strong rock mass damage, thus resulting in a critical stability condition. Field evidence includes: (1) local faults crossing the rock mass and representing internal sliding surfaces; (2) slickensides and fault slips within the rock mass; (3) fracture joints of gravity-induced origin; (4) strong rock mass damage in over-stressed zones of the slope; and (5) slope monitoring data recorded by some installed devices. Three failure scenarios have been identified: a wedge failure involving a limestone block of 110,000 m3 (failure scenario 1: BLOCK1); a larger wedge failure involving an assembled limestone block of 200,000 m3 (failure scenario 2: BLOCK1-2-3); and a retrogressive failure involving a rear dolomitic block possibly triggered by the collapse of the limestone slope, mobilizing a maximum volume of 335,000 m3 (failure scenario 3: DOLOMITIC BLOCK). This paper shows that to comprehensively study stability problems involving natural rock slopes we must consider the interaction between pre-existing discontinuities, internal sub-blocks subdividing the unstable slope, rock mass strength and gravity-induced fractures that form during the delicate phase preceding slope collapse. Gravity-induced joints can be differentiated on the field from those of tectonic origin on the basis of some geometrical features, in particular their lower persistence and higher joint roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abele G (1974) Bergstürze in den Alpen: ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschlaftliche Alpenvereinshefte 25, München

  • Abele G (1994) Large rockslides: their causes and movement on internal sliding planes. Mt Res Dev 14:315–320

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Meloni F, Valle C, Rivolta C (2013) Structurally-controlled instability, damage and slope failure in a porphyry rock mass. Tectonophysics 605:34–47

    Article  Google Scholar 

  • Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14

    Article  Google Scholar 

  • Barla G, Antolini F, Barla M, Mensi E, Piovano G (2010) Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng Geol 116:218–235

    Article  Google Scholar 

  • Barton N, Bandis S (1990) Review of predictive capabilities of JRC-JCS model in engineering practice. In: Barton N, Stephansson O (eds) Proceeding of the international symposium on rock joints. Balkema, Rotterdam, pp 603–610

    Google Scholar 

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54

    Article  Google Scholar 

  • Basu A, Aydin A (2004) A method for normalization of Schmidt hammer rebound values. Int J Rock Mech Min Sci 41:1211–1214

    Article  Google Scholar 

  • Bolla A, Paronuzzi P (2017) Stress-strain modeling to investigate the internal damage of rock slopes with a bi-planar failure. In: Mikoš M, Vilímek V, Yin Y, Sassa K (eds) Advancing culture of living with landslides—landslides in different environments. Proceedings of the 4th World Landslide Forum, 29 May–2 June 2017, Ljubljana. Springer International Publishing, pp 397–405

  • Bolla A, Paronuzzi P. Numerical investigation of the pre-collapse behavior and internal damage of an unstable rock slope. Rock Mech Rock Eng (Submitted)

  • Bonzanigo L, Eberhardt E, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44:1157–1180

    Article  Google Scholar 

  • Braathen A, Blikra LH, Berg SS, Karlsen F (2004) Rock-slope failures in Norway; type, geometry, deformation mechanisms and stability. Norw J Geol 84:67–88

    Google Scholar 

  • Brideau M-A, Stead D, Couture R (2006) Structural and engineering geology of the East Gate Landslide, Purcell Mountains, British Columbia, Canada. Eng Geol 84:183–206

    Article  Google Scholar 

  • Brideau M-A, Pedrazzini A, Stead D, Froese C, Jaboyedoff M, van Zeyl D (2011) Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides 8:139–158

    Article  Google Scholar 

  • Buyuksagis IS, Goktan RM (2007) The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. Int J Rock Mech Min Sci 44:299–307

    Article  Google Scholar 

  • Carulli GB (2006) Carta geologica del Friuli Venezia Giulia—Scala 1:150,000 con Note Illustrative. Tabacco, Udine, p 44

    Google Scholar 

  • Chang K-J, Taboada A, Chan Y-C (2005) Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake. Geomorphology 71:293–309

    Article  Google Scholar 

  • Chigira M (1992) Long-term gravitational deformation of rocks by mass rock creep. Eng Geol 32:157–184

    Article  Google Scholar 

  • Chigira M (2009) September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations, Kyushu, southern Japan. Eng Geol 108:1–15

    Article  Google Scholar 

  • Cloutier C, Locat J, Couture R, Jaboyedoff M (2016) The anatomy of an active slide: the Gascons rockslide, Québec, Canada. Landslides 13:241–258

    Article  Google Scholar 

  • Codeglia D, Dixon N, Fowmes GJ, Marcato G (2017) Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms. Eng Geol 219:21–31

    Article  Google Scholar 

  • Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26

    Article  Google Scholar 

  • Deng QL, Zhu ZY, Cui ZQ, Wang XP (2000) Mass rock creep and landsliding on the Huangtupo slope in the reservoir area of the Three Gorges Project, Yangtze River, China. Eng Geol 58:67–83

    Article  Google Scholar 

  • Eberhardt E (2003) Rock slope stability analysis—utilization of advanced numerical techniques. University of British Columbia, Vancouver

    Google Scholar 

  • Eberhardt E (2008) The role of advanced numerical methods and geotechnical field measurements in understanding complex deep-seated rock slope failure mechanisms. Can Geotech J 45:484–510

    Article  Google Scholar 

  • Eberhardt E, Thuro K, Luginbuehl M (2005) Slope instability mechanisms in dipping interbedded conglomerates and weathered marls—the 1999 Rufi landslide, Switzerland. Eng Geol 77:35–56

    Article  Google Scholar 

  • Einstein HH, Dershowitz WS (1990) Tensile and shear fracturing in predominantly compressive stress fields—a review. Eng Geol 29(2):149–172

    Article  Google Scholar 

  • Euser B, Rougier E, Lei Z, Knight EE, Frash LP, Carey JW, Viswanathan H, Munjiza A (2019) Simulation of fracture coalescence in granite via the combined Finite-Discrete element method. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01773-0

    Article  Google Scholar 

  • Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38:329–343

    Article  Google Scholar 

  • Ganerød GV, Grøneng G, Rønning JS, Dalsegg E, Elvebakk H, Tønnesen JF, Kveldsvik V, Eiken T, Blikra LH, Braathen A (2008) Geological model of the Åknes rockslide, western Norway. Eng Geol 102:1–18

    Article  Google Scholar 

  • Gigli G, Fanti R, Canuti P, Casagli N (2011) Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: the case of Mt. Beni (Florence, Italy). Eng Geol 120:48–59

    Article  Google Scholar 

  • Hoek E (2007) Practical Rock Engineering. http://www.rocscience.com/educational/hoeks_corner. Accessed Apr 2019

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43:203–215

    Article  Google Scholar 

  • Holm K, Bovis M, Jakob M (2004) The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57:201–216

    Article  Google Scholar 

  • Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90(10):3105–3125

    Article  Google Scholar 

  • Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanism, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Proceedings of the international conference on landslide risk management, Vancouver, BC. CRC Press, Taylor and Francis Group, pp 99–128

  • ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Article  Google Scholar 

  • Jaboyedoff M, Penna I, Pedrazzini A, Baroň I, Crosta GB (2013) An introductory review on gravitational-deformation induced structures, fabrics and modeling. Tectonophysics 605:1–12

    Article  Google Scholar 

  • Kahraman S, Fener M, Gunaydin O (2002) Predicting the Schmidt hammer values of in situ intact rock from core sample values. Int J Rock Mech Min Sci 39:395–399

    Article  Google Scholar 

  • Katz O, Reches Z, Roegiers J-C (2000) Evaluation of mechanical rock properties using a Schmidt Hammer. Int J Rock Mech Min Sci 37:723–728

    Article  Google Scholar 

  • Marcato G, Bossi G, Frigerio S, Mantovani M, Pasuto A, Schenato L (2014) Studio e monitoraggio della situazione di dissesto che interessa il versante sinistro del Tagliamento in corrispondenza del “Passo della Morte”. Relazione Finale, Convenzione protocollo n. PC/2805/CD2. Unpublished Report for the Civil Protection of the Friuli Venezia Giulia Region

  • Martinis B (1985) Il lago quaternario di Forni di Sotto (Alpi Carniche). In: In Alto. Cr. Soc. Alpina Friulana, Udine, vol 47, pp 73–83

  • Martinis B (1994) Nuovi dati sul lago quaternario di Forni di Sotto (Udine). In: In Alto. Cr. Soc. Alpina Friulana, Udine, Italy, vol. 76, pp 39-44

  • McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153–154:1–16

    Article  Google Scholar 

  • Nazir R, Momeni E, Jahed Armaghani D, Mohd Amin MF (2013) Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng 18:1737–1746

    Google Scholar 

  • Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46:819–829

    Article  Google Scholar 

  • Paronuzzi P, Bolla A (2012) The prehistoric Vajont rockslide: an updated geological model. Geomorphology 169–170:165–191

    Article  Google Scholar 

  • Paronuzzi P, Bolla A (2015a) Gravity-induced rock mass damage related to large en masse rockslides: evidence from Vajont. Geomorphology 234:28–53

    Article  Google Scholar 

  • Paronuzzi P, Bolla A (2015b) Gravity-induced fracturing in large rockslides: possible evidence from Vajont. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory: landslide processes. Proceedings of the XII international IAEG congress, 15–19 September 2014, Turin. Springer, pp 213–216

  • Paronuzzi P, Bolla A, Rigo E (2016a) 3D Stress–strain analysis of a failed limestone wedge influenced by an intact rock bridge. Rock Mech Rock Eng 49(8):3223–3242

    Article  Google Scholar 

  • Paronuzzi P, Bolla A, Rigo E (2016b) Brittle and ductile behavior in deep-seated landslides: learning from the Vajont experience. Rock Mech Rock Eng 49(6):2389–2411

    Article  Google Scholar 

  • Pisa G (1972) Geologia dei Monti a nord di Forni di Sotto (Carnia Occidentale). Carta Geologica—Scala 1:20000 con Note Illustrative. Giornale di Geologia. Annali del Museo Geologico di Bologna. Serie 2a, vol XXXVIII, pp 543–688

  • Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazards Earth Syst Sci 8:377–407

    Article  Google Scholar 

  • Rocscience (2007) RocData (version 4.0). Rocscience Inc., Toronto

  • Sandøy G, Oppikofer T, Nilsen B (2017) Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway. Geomorphology 289:78–95

    Article  Google Scholar 

  • Sturzenegger M, Stead D (2012) The Palliser Rockslide, Canadian Rocky Mountains: characterization and modeling of a stepped failure surface. Geomorphology 138:145–161

    Article  Google Scholar 

  • Teza G, Marcato G, Pasuto A, Galgaro A (2015) Integration of laser scanning and thermal imaging in monitoring optimization and assessment of rockfall hazard: a case history in the Carnic Alps (Northeastern Italy). Nat Hazards 76:1535–1549

    Article  Google Scholar 

  • Tomás R, Abellán A, Cano M, Riquelme A, Tenza-Abril AJ, Baeza-Brotons F, Saval JM, Jaboyedoff M (2018) A multidisciplinary approach for the investigation of a rock spreading on an urban slope. Landslides 15:199–217

    Article  Google Scholar 

  • Tsou C-Y, Feng Z-Y, Chigira M (2011) Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology 147:166–178

    Article  Google Scholar 

  • Tuckey Z, Stead D (2016) Improvements to field and remote sensing methods for mapping discontinuity persistence and intact rock bridges in rock slopes. Eng Geol 208:136–153

    Article  Google Scholar 

  • Willenberg H, Loew S, Eberhardt E, Evans KF, Spillmann T, Heincke B, Maurer H, Green AG (2008a) Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): part I—internal structure from integrated geological and geophysical investigations. Eng Geol 101:1–14

    Article  Google Scholar 

  • Willenberg H, Evans KF, Eberhardt E, Spillmann T, Loew S (2008b) Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): part II—three-dimensional deformation patterns. Eng Geol 101:15–32

    Article  Google Scholar 

  • Zangerl C, Eberhartd E, Perzlmaier S (2010) Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng Geol 112:53–67

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Civil Protection of the Friuli Venezia Giulia Region for the useful slope monitoring data provided. The authors would also like to acknowledge the anonymous reviewers for their help in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bolla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolla, A., Paronuzzi, P. Geomechanical Field Survey to Identify an Unstable Rock Slope: The Passo della Morte Case History (NE Italy). Rock Mech Rock Eng 53, 1521–1544 (2020). https://doi.org/10.1007/s00603-019-01963-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01963-w

Keywords

Navigation